04. Interpreter: Control Flows and Functions
4.1 If-Then-Else
A new command is added for the if-then-else control flow:
if condition yes)
(if condition yes no) (
The if
command is similar to the (? yes no)
operator in the calculator chapter. Except that the “else” part is
optional. So the code is modified to handle both of them.
def pl_eval(env, node):
...# conditional
if len(node) in (3, 4) and node[0] in ('?', 'if'):
*no = node
_, cond, yes, = no[0] if no else ['val', None] # the `else` part is optional
no = (dict(), env) # new scope
new_env if pl_eval(new_env, cond):
return pl_eval(new_env, yes)
else:
return pl_eval(new_env, no)
Note that I created a new scope before evaluating the condition, this
allows a variable declaration in the condition, for example:
(if (var aaa bbb) (then use aaa here))
. This is just
syntactic sugar.
4.2 Loops
The syntax of the loop
command:
loop condition body)
(
(break) (continue)
The code for handling the loop
command has one thing in
common with the if
command: it translates to a Python loop,
just like the if
command translates to a Python
if
.
def pl_eval(env, node):
...# loop
if node[0] == 'loop' and len(node) == 3:
= node
_, cond, body = None
ret while True:
= (dict(), env)
new_env if not pl_eval(new_env, cond):
break
= pl_eval(new_env, body)
ret return ret
We have also added the break
and continue
commands. They are implemented by (ab)using Python exceptions. You can
also propagate them explicitly via the return value of the
pl_eval
if you don’t like such hacks or you can’t use
exceptions.
def pl_eval(env, node):
...# loop
if node[0] == 'loop' and len(node) == 3:
= node
_, cond, body = None
ret while True:
= (dict(), env)
new_env if not pl_eval(new_env, cond):
break
try:
= pl_eval(new_env, body)
ret except LoopBreak:
break
except LoopContinue:
continue
return ret
# break & continue
if node[0] == 'break' and len(node) == 1:
raise LoopBreak
if node[0] == 'continue' and len(node) == 1:
raise LoopContinue
class LoopBreak(Exception):
def __init__(self):
super().__init__('`break` outside a loop')
class LoopContinue(Exception):
def __init__(self):
super().__init__('`continue` outside a loop')
4.3 Functions
The syntax:
def func-name (arg-names...) body)
( (call func-name args...)
The code for function definition does nothing significant. It just performs some sanity checks and puts the function name in the map.
def pl_eval(env, node):
...# function definition
if node[0] == 'def' and len(node) == 4:
= node
_, name, args, body # sanity checks
for arg_name in args:
if not isinstance(arg_name, str):
raise ValueError('bad argument name')
if len(args) != len(set(args)):
raise ValueError('duplicated arguments')
# add the function to the scope
= env
dct, _ = (name, len(args))
key if key in dct:
raise ValueError('duplicated function')
= (args, body, env)
dct[key] return
Note that I added the number of arguments to the key, this allows a form of “overloading” — functions with the same name but different numbers of arguments can coexisit. It also distinguishes function names from variable names.
Now the call
command is handled. Function arguments are
treated like new variables. Just create a new scope, put the arguments
in it, and evaluate the body.
def pl_eval(env, node):
...# function call
if node[0] == 'call' and len(node) >= 2:
*args = node
_, name, = (name, len(args))
key = name_loopup(env, key)[key]
fargs, fbody, fenv # args
= dict()
new_env for arg_name, arg_val in zip(fargs, args):
= pl_eval(env, arg_val)
new_env[arg_name] # call
try:
return pl_eval((new_env, fenv), fbody)
except FuncReturn as ret:
return ret.val
Special care: the parent scope is not the scope of the caller, but the scope in which the function was defined. (The scope is saved when defining a function).
The (return)
command is handled like the
(break)
or (continue)
.
def pl_eval(env, node):
...# return
if node[0] == 'return' and len(node) == 1:
raise FuncReturn(None)
if node[0] == 'return' and len(node) == 2:
= node
_, val raise FuncReturn(pl_eval(env, val))
class FuncReturn(Exception):
def __init__(self, val):
super().__init__('`return` outside a function')
self.val = val
4.4 Done
Congratulations. We have built an interpreter for a mini programming language.
def test_eval():
def f(s):
return pl_eval(None, pl_parse_prog(s))
assert f('''
(def fib (n)
(if (le n 0)
(then 0)
(else (+ n (call fib (- n 1))))))
(call fib 5)
''') == 5 + 4 + 3 + 2 + 1
assert f('''
(def fib (n) (do
(var r 0)
(loop (gt n 0) (do
(set r (+ r n))
(set n (- n 1))
))
(return r)
))
(call fib 5)
''') == 5 + 4 + 3 + 2 + 1
Our interpreter is not much more difficult than the calculator in the previous chapter. Variables are solved by extra states, control flows are translated into Python control flows — it’s pretty much still simple recursion.
The interpreter still depends on an existing language for execution. How do we compile our language into machine code and run it natively on the CPU? That’s the next challenge.